標籤彙整: 型胚

什麼是吹脹比?控制中空成型壁厚與強度的黃金法則

你的瓶子為何一摔就破?

為什麼您的中空瓶罐在墜落測試時,總是從角落破裂?為什麼產品的壁厚如此不均勻,有些地方厚、有些地方卻薄如蟬翼?

答案很可能就藏在可製造性設計 DFM 階段一個最關鍵、卻常被忽視的參數:吹脹比。

什麼是吹脹比

吹脹比是一個簡單的數學比例,用來描述塑膠在模具中被拉伸的程度。

其定義是:模具型腔的最大直徑 ÷ 型胚或瓶胚的原始直徑。

這是一個黃金法則,因為它直接決定了材料被拉伸的極限。一個 1:1 的比例代表材料幾乎沒有拉伸;而一個 4:1 的比例,則代表材料的表面積被迫延展了數倍。

關鍵一:吹脹比如何決定壁厚與強度

吹脹比與壁厚成絕對的反比關係。

比例越高,代表型胚需要被拉伸得越薄,才能填滿整個模腔。這會導致兩個直接的後果:

  1. 整體壁厚變薄: 過高的吹脹比會使產品整體的平均壁厚不足。
  2. 壁厚嚴重不均: 塑膠在吹脹時,會優先填滿距離最近的區域。這導致瓶身(吹脹比小)的壁厚,遠大於瓶底角落(吹脹比最大)的壁厚。

這就是為什麼瓶罐的角落會一摔就破,因為它們通常是吹脹比最大的區域,壁厚也是成品上最薄、最脆弱的點。

關鍵二:吹脹比如何決定成型可行性

每種塑膠材料的物理拉伸能力都有其極限。

如果 DFM 階段設計的吹脹比過大,超出了材料的物理延展極限,熔融的型胚在吹氣過程中就會直接破裂,導致生產失敗。

專業建議: 優秀的製造商會建議將吹脹比控制在一個安全的範圍內,例如 3:1 或 2:1,具體取決於材料、產品形狀與壁厚要求。

如何優化吹脹比的設計?

  1. DFM 階段: 避免設計又寬又扁的瓶身、卻搭配極窄小的瓶頸,這會造成局部的吹脹比過大。
  2. 製程改善: 對於擠出中空成型,可以導入型胚編程,動態調整擠出型胚的厚度,預先在拉伸量大的區域提供更多材料,以補償高吹脹比帶來的過度薄化。

省下 30% 模具修改費:10 個中空成型 DFM 設計原則

開模前必看的設計原則

在 3D 圖檔中看似完美的瓶子或油箱,為何一開模就問題百出?壁厚不均、角落破裂、嚴重翹曲,這些都是昂貴的模具修改與量產失敗的根源。

中空成型的可製造性設計 DFM,與射出成型截然不同。射出成型是關於材料的填充,而中空成型則是關於材料的拉伸。

一個優秀的 DFM 設計,是在繪圖階段就管理好塑膠型胚的拉伸行為。遵循以下 10 個關鍵原則,是您省下 30% 模具修改費、確保專案成功的保證。

1. 拔模角:脫模的基礎

這是最基本的原則。拔模角是零件側面相對於脫模方向的微小傾斜。塑膠冷卻時會收縮並緊緊抱住模具,如果沒有拔模角,產品頂出時會產生刮痕,甚至卡死。

  • 專業建議: 擠出中空成型 EBM 至少需要 3 度,射出中空成型 IBM 至少需要 1-2 度。

2. R 角:防止破裂的關鍵

塑膠型胚在吹脹時,不喜歡尖銳的轉角。尖銳的內外R角會強制材料過度拉伸,導致該處壁厚變得極薄,甚至直接破裂。

  • 專業建議: R 角是材料流動的路標。所有轉角都應盡可能圓滑,內 R 角半徑至少應等於 2 倍的材料壁厚,R 角越大,壁厚越均勻。

3. 控制吹脹比

吹脹比是指模具型腔的最大直徑與型胚的原始直徑的比例。這是決定壁厚均勻度的核心參數。

  • 專業建議: 吹脹比過大,代表型胚需要被拉伸得非常薄才能填滿模腔。應盡可能將比例控制在 3:1 以內,以確保底部和角落有足夠的材料強度。

4. 避免大面積平面

大面積、平坦的表面是中空成型品翹曲變形的重災區。原因是塑膠在冷卻過程中收縮不均,平坦的表面缺乏結構支撐,會向內凹陷或向外翹曲。

  • 專業建議: 在大平面上設計淺淺的加強肋,或使其表面帶有微小的弧面或冠狀,就能大幅提升結構剛性,有效抵抗收縮變形。

5. 加強肋的正確設計

中空成型的肋與射出成型的肋完全不同。射出成型的肋可以做得又高又薄,但中空成型無法。

  • 專業建議: 肋必須設計成寬且淺的圓滑凸起。如果肋太高太窄,型胚在拉伸時將無法填滿,只會形成拉絲或破洞。

6. 瓶底的內凹設計

在擠出中空成型 EBM 中,型胚的底部是被模具夾斷並熱熔密封的。這條夾斷線是產品外觀的一部分,且底部若為平面,會因冷卻收縮而不穩定。

  • 專業建議: 應將瓶底設計為內凹式,這樣可以將夾斷疤痕隱藏起來,並創造一個穩固的站立環,確保瓶子能平穩放置。

7. 把手的根部設計

EBM 能一體成型把手是其巨大優勢,但把手與瓶身的連接處也是應力集中點。

  • 專業建議: 把手與瓶身連接的根部,必須使用盡可能大的 R 角過渡。R 角過小會導致結合線脆弱,使把手在受力時輕易斷裂。

8. 考量夾斷線位置

擠出中空成型的夾斷線,是產品上最脆弱的區域。

  • 專業建議: DFM 階段就必須規劃夾斷線的位置。應避免將其放置在產品的主要受力面或外觀要求最高的區域。

9. 預留修邊的加工區域

擠出中空成型必然會產生毛邊。在自動化生產中,這些毛邊需要被機器人或刀具裁切。

  • 專業建議: 應在 DFM 階段就為裁切刀具預留足夠的空間,並設計易於定位的特徵。若忽視修邊工序,會導致後加工成本大增或根本無法自動化。

10. 表面紋理與文字

在模具上蝕刻的紋理或文字,在吹脹過程中會被拉伸。

  • 專業建議: 所有文字或 Logo 都應設計得寬、淺、且圓滑。過於尖銳或深刻的圖樣,會因材料拉伸不足而導致細節模糊不清。

什麼是中空成型?圖解三大類型 EBM、IBM 與 SBM 原理

什麼是中空成型?

中空成型是一種專門製造中空塑膠零件的量產技術。從您每天使用的飲料瓶、洗髮精瓶,到大型的工業油桶或水塔,都是中空成型的產品。

其核心原理是將熱塑性塑膠加熱軟化,形成一個管狀的型胚或瓶胚,然後將其置於金屬模具中,再吹入高壓空氣,使塑膠膨脹並貼合模具的內壁,冷卻定型後即為中空產品。

根據型胚或瓶胚的製造方式,中空成型主要分為三大類型。

1. 擠出中空成型 EBM

EBM Extrusion Blow Molding 是最常見的類型。

  • 原理: 塑膠粒經押出機熔融後,被垂直擠出成一個中空的管狀型胚。當型胚達到設定長度時,模具從兩側快速閉合,夾斷型胚並密封底部。接著,吹氣針從上方吹入空氣,使型胚膨脹貼合模具。
  • EBM 的關鍵在於模具閉合時的夾斷設計,這會產生必然的毛邊,需在後續工序中修邊去除。
  • 應用: 牛奶瓶、洗髮精瓶、機油桶、汽車風管、大型工業容器。

2. 射出中空成型 IBM

IBM Injection Blow Molding 是一種高精度的製程。

  • 原理: 這是一個兩階段製程。
    1. 第一階段:使用射出成型,在高壓下製造出一個實心的瓶胚,其外型類似試管,瓶口螺紋在此階段已精確成型。
    2. 第二階段:將瓶胚轉移至中空成型模具中,加熱後吹氣使其膨脹。
  • IBM 的最大優勢是瓶口精度極高,且成品完全沒有毛邊,無需修邊。
  • 應用: 化妝品瓶、醫療藥罐、廣口瓶。

3. 拉伸中空成型 SBM

SBM Stretch Blow Molding 是製造 PET 寶特瓶的關鍵技術。

  • 原理: 這同樣是兩階段製程,是 IBM 的一種延伸。
    1. 第一階段:射出成型製造出 PET 瓶胚。
    2. 第二階段:將瓶胚加熱至特定溫度,一根拉伸桿向下將瓶胚做軸向拉伸,同時吹入高壓空氣做徑向拉伸。
  • 這種雙軸拉伸的動作會使 PET 材料的分子鏈重新排列,大幅提升瓶身的透明度、堅固性與氣密性。
  • 應用: PET 碳酸飲料瓶、礦泉水瓶、食用油瓶。