標籤彙整: CNC修邊

塑膠厚板真空成型後加工:CNC 切割與鑽孔技術

成品來自成型後的精密加工

在塑膠厚板真空成型製程中,當塑膠板材從模具上取下時,它並非最終產品,而是一個仍連著多餘邊料的粗胚。這個粗胚缺乏精確的輪廓,也沒有安裝孔或散熱槽等功能性特徵。真空成型本身只解決了立體塑形的問題,而產品的最終精度、功能完整性,完全取決於後段的 CNC 精密加工技術。

為什麼後加工是必要的?

厚板真空成型的原理是將加熱軟化的板材透過真空吸力,貼合到單面模具上形成 3D 造型。這種製程特性決定了:

  1. 輪廓尚未分離: 成型後的產品依然連接在原始板材上,必須透過精確切割才能分離。
  2. 無法直接成型孔洞: 與射出成型不同,真空成型無法在製程中預留孔位。所有的安裝孔、散熱槽、開口等功能性結構,都必須在成型後透過機械加工完成。

對於薄板泡殼包裝,後續處理可透過刀模沖壓完成。但對於厚度 3mm 以上、尺寸大型且具備複雜 3D 曲面的工業外殼,唯一能確保精度的方法就是 CNC 數控加工

關鍵技術一:5 軸 CNC 輪廓切割與修邊

這是決定產品輪廓精度與表面品質的核心工序。

成型後的粗胚會被固定在專為該產品設計的精密治具上,確保加工過程中零件的絕對穩定與定位精度。接著,5 軸 CNC 加工中心的刀具開始運作。

所謂5 軸,是指刀具能在 X、Y、Z 三個直線軸之外,再進行 A、B(或 A、C)兩個旋轉軸的同步運動。這種多軸聯動能力使得:

  • 刀具能始終保持最佳切削角度,垂直或傾斜於產品的 3D 曲面
  • 沿著 CAD/CAM 設計的輪廓路徑進行連續精確切割
  • 將產品從廢料板上完美分離,邊緣平整無毛邊

關鍵技術二:CNC 鑽孔與開槽加工

在同一個 CNC 加工程序中,依照 CAM 軟體生成的刀具路徑,機台會在產品的指定位置執行:

  • 鑽孔加工: 用於螺絲鎖固、五金件安裝或電路板定位,孔徑公差可控制在 ±0.1mm 以內
  • 銑槽加工: 用於開關面板、顯示螢幕嵌入、散熱風扇安裝或通風口開設

5 軸 CNC 的優勢在於:

  • 確保孔位與槽孔的三維空間定位精度
  • 邊緣乾淨、無毛刺、無應力集中
  • 保證後續組裝的順利度與產品的最終質感

成型與加工是一體化技術

厚板真空成型是成型 + 加工的整合製程。真空成型賦予塑膠立體造型,5 軸 CNC 則賦予其工業級精度與功能性。

一個專業的厚板真空成型製造商,必定同時具備:

  • DFM(可製造性設計)能力: 從設計階段就規劃 CNC 治具的固定點與刀具路徑
  • 精密 CNC 加工技術: 確保交付的產品無需二次處理,可直接進入組裝產線
  • 品質管控系統: 從成型到加工全程追溯,保證產品一致性

這種整合能力,是厚板真空成型產業的核心競爭力。

真空成型之後的加工:5 軸 CNC 修邊、組裝與塗裝全解析

真空成型件完成後只是一個粗胚

許多人以為塑膠熱成型機台掉下來的就是最終產品,事實並非如此。從熱成型機台取下的工件,只是一個還帶著多餘邊料、未經處理的粗胚。

它必須經過一系列精密的後段加工,才能變身為您設計圖上的最終樣貌。這個後段製程的優劣,直接決定了產品的精度、功能與質感。

關鍵步驟:修邊

這是熱成型後的第一步,也是最關鍵的一步:將成型品從原始板材上精確地分離出來。

1. 模切

這是一種高速的沖壓製程。使用一組客製化的刀模,像餅乾壓模一樣,一次性將成型品從板材上沖壓裁切下來。

  • 優點: 速度極快,單件成本極低。
  • 缺點: 刀模費用高,只適用於 2D 平面輪廓,且僅限薄板材料。
  • 應用: 食品包裝泡殼、醫療托盤、電子產品內襯。

2. 5 軸 CNC 銑削

這是厚板真空成型與複雜產品的核心技術。成品會被牢固地固定在客製化的治具上,高速運轉的 5 軸 CNC 刀具能沿著複雜的 3D 輪廓進行精確切割。

  • 優點: 精度極高,能切割任何 3D 造型的孔洞、開槽與輪廓。無需昂貴刀模,設計變更彈性高。
  • 缺點: 加工時間較長,單件成本較高。
  • 應用: 所有厚板產品,如醫療設備外殼、機器罩件、汽車零件。

後加工與組裝

裁切修邊只是完成了輪廓。要成為功能完備的產品,還需要以下製程:

1. 鑽孔、開槽

雖然 5 軸 CNC 已完成大部分工作,但某些特定的精密孔位、沉頭孔、或攻牙前的導孔,可能會在此步驟中二次加工或倒角,以確保最高的組裝精度。

2. 黏合、熔接與組裝

真空成型品常作為大型設備的外殼,可能由好幾個部件組合而成。此步驟會使用工業級結構膠超音波熔接熱板熔接,將不同部件牢固地組合成一個複雜的總成,或安裝上金屬支架、樞軸等配件。

3. 塗裝、印刷與表面處理

為了提升美觀、耐候性或特定功能,成品會進行後處理。

  • 塗裝: 噴塗指定顏色的面漆、抗刮傷的金油、或抗 UV 保護漆。
  • 印刷: 在表面絲網印刷 Logo、操作說明或警示標語。
  • 其他: 貼附隔熱材、導電塗層 EMI 遮罩等。

結論:後段加工決定最終產品精度

從一塊塑膠板材到精美的機器外殼,真空成型本身只是完成了塑形。產品最終的精度、組裝的密合度、以及外觀的質感,完全取決於 5 軸 CNC 修邊、組裝、塗裝等後段加工的工藝水準。

一個優秀的熱成型製造商,必定同時是後加工領域的專家。

真空成型 DFM-7 個避免量產失敗的關鍵設計原則

什麼是 DFM? 為什麼它能幫您省錢?

DFM 即 Design for Manufacturability(可製造性設計)。在真空成型領域,DFM 甚至比射出成型更為重要。

一個在 3D 軟體中看似完美的設計,若沒有遵循 DFM 原則,在實際開模生產時,極可能發生拉伸破裂、角落過薄、表面刮傷、或成品卡死在模具上的災難。

真空成型的 DFM 是在產品設計階段就導入製造思維,確保產品能被高效、穩定且低成本地生產出來。在開模前花時間優化 DFM,是省下未來鉅額模具修改費與不良品成本的最佳途徑。

7 大真空成型 DFM 設計原則

您在發布文章時,強烈建議為以下每個原則都配上正確與錯誤的對比圖例。

原則一:設定足夠的拔模角

這是真空成型 DFM 的第一金科玉律,絕對必要。拔模角是零件側面相對於脫模方向的傾斜角度。
專業解析: 塑膠板材冷卻時會收縮並緊緊包住模具。如果沒有拔模角,成品會被牢牢卡住,強行頂出會導致產品變形、刮傷或模具損壞。

  • 建議: 所有垂直面至少應設定 3 度拔模角。
  • 表面咬花: 如果產品表面有咬花紋理,摩擦力更大,拔模角應增加到 5 度甚至 7 度以上。

原則二:R 角必須圓滑 Radii

塑膠板材不喜歡尖銳的轉角。
專業解析: 當軟化的板材被拉伸時,如果遇到 90 度尖角,該處的材料會被極度拉伸,導致厚度變得極薄,甚至直接破裂。同時,尖銳的內角也是應力集中點,使成品在受到輕微撞擊時就從角落開裂。

  • 建議: 所有內外轉角都應盡可能設計圓滑的 R 角。R 角半徑至少應等於 1 倍的材料厚度。

原則三:管理拉伸比

拉伸比是指零件的深度與其開口寬度的比例。
專業解析: 這直接決定了壁厚的均勻度。一個又深又窄的盒子,其底部和角落的材料會來自於最初的一小塊板材,導致該處被拉得非常薄,失去結構強度。

  • 建議: 拉伸比不宜過大,通常建議控制在 2:1 以內。若必須進行深度拉伸,可能需要使用更厚的板材,或改用壓力成型。

原則四:嚴格避免倒鉤

倒鉤是指任何阻礙零件從單一方向垂直脫模的特徵,例如側面的凹槽、卡榫或內勾。
專業解析: 在單面模具的真空成型中,倒鉤會導致成品 100% 卡死在模具上。雖然射出成型可用滑塊解決,但真空成型模具通常不具備此類複雜結構。設計時必須確保所有特徵都能從單一方向順利脫模。

原則五:公模成型 vs 母模成型

您的產品細節要放在哪一面,決定了模具的製作方式。 專業解析:

  • 母模成型: 板材被吸入凹模中。優點是產品的外觀面細節最清晰,尺寸精確,適用於外殼。
  • 公模成型: 板材包覆在凸模上。優點是產品的內表面細節最清晰,適用於托盤或內襯。
  • 這兩種方式會顯著影響壁厚的分佈,公模成型的底部角落最薄,而母模成型的頂部邊緣最薄。

原則六:正確設計肋與表面特徵

您不能像射出成型那樣設計薄薄的加強肋。
專業解析: 真空成型的肋必須是寬且圓滑的,並且嚴格遵守拔模角規則。過窄或過高的肋,其頂部會因拉伸而變得極薄或破裂。同理,Logo 或文字也應設計成寬大、圓滑的凸起或凹陷,避免尖銳線條。

原則七:孔洞應由二次加工完成

切勿試圖在模具上直接成型出精密的孔洞。
專業解析: 熱成型無法製造出垂直於表面的乾淨孔洞。所有精確的孔位、開口和最終的產品輪廓,都應在 DFM 階段就預留定位特徵,並在成型後透過 5 軸 CNC 裁切或沖壓來完成。